Hayflick Limit , why we age

[ATTACH=full]373341[/ATTACH]

https://en.m.wikipedia.org/wiki/Hayflick_limit

The concept of the Hayflick limit was advanced by American anatomist Leonard Hayflick in 1961,[3] at the Wistar Institute in Philadelphia, Pennsylvania, United States. Hayflick demonstrated that a normal human fetal cell population will divide between 40 and 60 times in cell culture before entering a senescence phase. This finding refuted the contention by Alexis Carrel that normal cells are immortal.
Each time a cell undergoes mitosis, the telomeres on the ends of each chromosome shorten slightly. Cell division will cease once telomeres shorten to a critical length. Hayflick interpreted his discovery to be aging at the cellular level. The aging of cell populations appears to correlate with the overall physical aging of an organism.[3][4]
Macfarlane Burnet coined the name “Hayflick limit” in his book Intrinsic Mutagenesis: A Genetic Approach to Ageing, published in 1974.[5]

https://embryo.asu.edu/pages/hayflick-limit

By: Zane Bartlett
Published: 2014-11-14
Keywords: Alexey Olovnikov
The Hayflick Limit is a concept that helps to explain the mechanisms behind cellular aging. The concept states that a normal human cell can only replicate and divide forty to sixty times before it cannot divide anymore, and will break down by programmed cell death or apoptosis. The concept of the Hayflick Limit revised Alexis Carrel’s earlier theory, which stated that cells can replicate themselves infinitely. Leonard Hayflick developed the concept while at the Wistar Institute in Philadelphia, Pennsylvania, in 1965. In his 1974 book Intrinsic Mutagenesis, Frank Macfarlane Burnet named the concept after Hayflick. The concept of the Hayflick Limit helped scientists study the effects of cellular aging on human populations from embryonic development to death, including the discovery of the effects of shortening repetitive sequences of DNA, called telomeres, on the ends of chromosomes. Elizabeth Blackburn, Jack Szostak and Carol Greider received the Nobel Prize in Physiology or Medicine in 2009 for their work on genetic structures related to the Hayflick Limit.

https://www.youtube.com/watch?v=jqCo-McgHL